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a b s t r a c t 

Asset Score is a standardized rating system and tool for assessing a building’s energy-related systems in 

the United States. The web-based tool models building energy use under standard operating conditions 

to rate the energy efficiency of the as-built building systems and enable level comparisons of building 

assets. With basic characteristics entered by users, the tool creates simplified EnergyPlus building models 

to support the rating analysis. However, even with a reduced set of model inputs, data collection remains 

a challenge and the commercial building market demands a more simplified entry point to the rating 

system. This paper discusses a hybrid method that combines regression models with real-time simula- 

tions to allow users to enter as few as seven building parameters to quickly assess the building energy 

performance prior to a full-scale analysis. Built upon large-scale building stock simulations, a random for- 

est approach was used to develop a set of regression models for various building use types. The majority 

of the Asset Score tool inputs were sampled extensively and fed into the regression models. These were 

combined with inferred inputs and user-defined uncertainty levels to create a distribution of possible 

energy use intensities for the building and its Preview score. With additional user inputs, the regression 

model can be transferred to an energy model for a full-scale energy simulation. The streamlined Asset 

Score Preview assessment provides an easy entry point to a full Asset Score assessment. It also enables 

users who manage a large number of buildings to screen and prioritize buildings that can benefit most 

from a more detailed evaluation and possible energy efficiency upgrades without intensive data collec- 

tion. 

© 2018 Published by Elsevier B.V. 
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. Introduction 

Asset Score, developed by the Pacific Northwest National Labo-

atory (PNNL) for the United States Department of Energy (DOE), is

 national web-based rating system to help commercial and multi-

amily building owners, operators and tenants understand the cur-

ent and potential performance of a building’s assets, which in-

lude building envelope (roof, walls and windows), mechanical sys-

ems and electrical systems. The Asset Score is calculated based on

tandardized building operation conditions independent of an indi-

idual building’s operational decisions. The Asset Score is a simple

0-point scale where the higher the score, the more efficient the

uilding asset is relative to its population of peers. The population

s constructed via robust building stock simulations for each build-

ng use type [1] . The web tool is built on a centralized Energy-
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lus and OpenStudio modeling engine to reduce the implementa-

ion cost for the users and increase standardization compared with

n approach that requires users to build their own energy mod-

ls [1] . Users can enter between 20 and 100 building characteris-

ics to obtain a standard Asset Score Report, which includes scores,

nergy use breakdown, efficiency rankings of building components

nd opportunities for energy efficiency improvements. 

The feedback from pilot evaluations conducted in 2012 and

013 suggested that data collection remains a challenge for

idespread adoption of this rating system, even with a reduced

et of model inputs [2] . To address this barrier, Asset Score Preview

hereinafter Preview) was developed to allow users to start assess-

ng energy efficiency of a building with as few as seven inputs.

he seven building characteristics form the basis for inferring the

emaining parameters to complete a full energy model. Preview re-

uires high-level inputs, including building name, location, vintage,

onditioned floor area, number of floors, predominant use type and

rientation. A few additional inputs regarding years of retrofit for

https://doi.org/10.1016/j.enbuild.2018.06.041
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2018.06.041&domain=pdf
mailto:supriya.goel@pnnl.gov
https://doi.org/10.1016/j.enbuild.2018.06.041


46 S. Goel et al. / Energy & Buildings 176 (2018) 45–57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Asset score tool architecture. 
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lighting, heating, ventilation and air conditioning (HVAC), and ser-

vice hot water systems can be provided if available. On the basis

of these limited inputs, Preview’s defaults database is able to pop-

ulate the remaining data points required for creating a complete

Asset Score model, which is then analyzed for energy efficiency

and energy savings. Using a regression model, Asset Score then

calculates the possible range of the building’s energy use based

on stock simulations and uncertainty analysis. The estimated en-

ergy use range is mapped to the Asset Score scale to provide users

with an estimated score range. Users can choose to convert their

building from the Preview mode into a full Asset Score assessment

mode by entering additional building characteristics. This paper

will discuss the methodology of using stock simulation, uncertainty

analysis and random forest sampling to develop the Preview anal-

ysis and the streamlined process of integrating regression analysis

and full-scale energy simulation. 

2. Asset score preview simulation framework 

2.1. Overview 

The Asset Score Tool is modular in design for clean separa-

tion of functionalities and flexible software development and test-

ing. The backend simulation process of the Asset Score Tool was

integrated within a framework to perform a sensitivity based on

energy use intensity (EUI) distributions. The EUI distributions are

the basis for the 10-point scale for each use type [1,3] . The analy-

sis framework was also used to develop the regression methodol-

ogy used to calculate scores for Preview buildings. Details on the

regression methodology used and parameter space evaluation are

discussed in the following sections. 

2.2. Asset score tool architecture 

The core components of the Asset Score Tool Application [4] are

devided into the following five subsystems, as shown in Fig. 1 . 

1. User Interface: The user interface is the outward-facing portion

of the tool that allows users to define the building characteris-

tics. The user interface offers two input modes: (i) Asset Score

Full and (ii) Asset Score Preview. In the full input mode, a user

can draw the building geometry and define building specific pa-

rameters such as construction types, mechanical system types

and efficiencies, electrical system details and more. The Preview

input mode limits user inputs to seven data points, providing

defaults for the remaining inputs and a capability for the user

to view and edit the default values. The defaults database is

discussed further in the next section. 

2. Asset score application: The Asset Score Application forms the

core of the Asset Score Tool. It translates all user inputs into

the Asset Score schema, which is then sent to the Analytical En-

gine. It also validates the data model and acts as the intermedi-

ary between the Analytical Engine, Simulation Framework and

Report Generator. For buildings submitted through the Preview

input mode, the Asset Score Application adds missing building

attributes through the defaults database, providing a complete

Asset Score data model to the Analytical Engine. 

3. Analytical Engine: The inference capabilities of the Facility En-

ergy Decision System, or FEDS [5] , is used to fill any missing

data that needs to be inferred (e.g. wall/roof U-factors as a

function of building vintage). Additionally, FEDS is used to eval-

uate energy efficiency improvement options, as noted below.

All inferred data points and user inputs are sent to the sim-

ulation framework through the standard data format of Asset

Score XML (AS XML). 

4. Simulation Framework: The simulation framework is a combi-

nation of EnergyPlus and OpenStudio. OpenStudio articulates
energy model and EnergyPlus runs simulations. The frame-

work is used for buildings submitted through the full input

mode. Buildings submitted through the Preview input mode go

through the uncertainty analysis framework, which allows for

a quick assessment of building components based on a regres-

sion model. The uncertainty analysis framework is explained in

detail in Section 3. 

5. Report Generator: The Report Generator runs a series of post-

processing scripts to calculate building scores and generates the

Asset Score Report. Buildings going through the full model re-

ceive a report with a current score and a potential score (af-

ter recommended retrofit) based on the whole building energy

simulation runs. Preview buildings receive a report with a score

range of three or four points based on the uncertainty analysis

through the regression engine. 

.3. Process 

The defaults database is built upon the DOE reference buildings

6] , the prototype buildings [14] and the Commercial Buildings En-

rgy Consumption Survey (CBECS) [27] . Based on a building’s lo-

ation, year of construction, use-type and conditioned floor area,
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Table 1 

The building types analyzed by asset score preview. 

Building Use Type Building Use Type Building Use Type 

Assisted Living Medium Office Religious Building 

City Hall Multifamily High-rise, 

Mid-Rise 

Retail 

Community Center Multifamily Low-rise School 

Courthouse Parking Garage Senior Center 

Large Hotel Police Station Small Hotel 

Large Office Post Office Small Office 

Library Post Office Warehouse (Non-Refrigerated) 
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he Asset Score Application identifies the remaining data points,

ncluding the construction types for all envelope components, ba-

ic geometry configuration such as aspect ratio and window-to-

all ratio, typical HVAC system type and service hot water system

ype. The year of construction is used by the defaults database and

he FEDS Analytical Engine to infer the typical technologies and

heir effeciencies based on the building vintage. FEDS was devel-

ped by PNNL to facilitate quick and scalable building energy au-

its and analyses over single- and large groups of buildings [5] .

he FEDS inferences are derived from multiple sources and tech-

iques, including dummy variable ordinary least squares regression

f CBECS data based on age, use type, size, and climate, equipment

fficiency standards, building energy codes and adoption rates, and

SHRAE (The American Society of Heating, Refrigerating and Air-

onditioning Engineers) handbooks, among others. These defaults

re made visible to the user, who can verify the value, edit the

alue or mark a default value as unknown. Each user indication

esults in the default value being marked as “certain” or “uncer-

ain” within the Asset Score Application. A verified or edited value

s translated to the uncertainty analysis model as a certain input,

nd a default value marked as unknown by the user is translated

s an uncertain input. The inputs that are not displayed for user

erification are evaluated as uncertain for all applicable scenarios.

hese include system controls (such as fan control, energy recov-

ry ventilation, demand control ventilation, daylighting control and

ccupancy sensor control, among others) as well as building geom-

try inputs (such as floor-to-floor height, building dimensions and

spect ratio). This allows Preview to run a quick analysis, with the

ore detailed model inputs provided through the full input mode.

he complete Asset Score data model is sent to the uncertainty

nalysis model to determine its EUI range. 

The uncertainty analysis model estimates the EUI range (within

5 percentile of sampled results) as well as the mean EUI for the

uilding with all the input values and associated uncertainties. The

UI range is post processed to give the corresponding score range.

n Asset Score Preview report provides the current score range,

otential score range and estimated potential energy savings. The

stimated savings are based on similarly scored buildings that have

een analylized in the full Asset Score Tool. The following sections

xplain the development of the regression models and the uncer-

ainty analysis process for Preview. 

. Development of regression models 

The data challenge presented for this analysis is how to con-

truct an underlying dataset that covers a variety of occupant- and

ission-normalized commercial building use types and building

haracteristics across a wide range of vintages and geographic lo-

ations. Building stock modeling is a proven technique; however,

he permutations associated with general stock modeling are more

anageable when targeting specific building types, geographic lo-

ations or technologies such as investigating potential for achieving

et zero-energy buildings [7] . 

Regression analysis is a popular technique for predicting build-

ng energy use. Several regression model frameworks have been

xplored in depth, with promising results, utilizing linear and non-

inear techniques [8] . Novel non-linear techniques for building en-

rgy optimization and prediction, as are used in this study, have

een explored by a variety of authors, with generally excellent re-

ults of percent error under 5%, [10,11] , although not as widely

dopted as more classic regression models, i.e., linear least squares.

or example, the ENERGY STAR Portfolio Manager® [12] , a U.S.

enchmark for rating commercial buildings based on their util-

ty bills, utilizes a classic weighted ordinary least squares regres-

ion to evaluate a building’s source EUI based on user inputs and
he CBECS [13] . Based on the data harvested from the sampling

ffort s described above, non-linear models were found to pro-

ide excellent accuracy when mapping between user-defined un-

ertainty ranges regarding building characteristics and asset-based

UI. These effort s are discussed at greater length below. 

The overall workflow for the development of the regression

odel and its application using the Asset Score Tool is depicted in

ig. 2 . The first step for this analysis is the development of the seed

odels, which are then used by the OpenStudio Analysis Frame-

ork for generating regression models for each building use type.

he Asset Score Tool collects the Preview inputs from the user and

ses the applicable regression model for computing the building’s

core range. As a last step, a PDF report is generated with the Pre-

iew score range and made available to the user. Each of these

omponents is explained in greater detail in the subsequent sec-

ions. 

.1. Constructing seed models 

The important first step for Asset Score is the construction

f a representative purpose-fit building energy use database. This

atabase has been developed using Asset Score seed models. Seed

odels are the initial models from which all subsequent model

erturbations stem. Seed models are generated using the PNNL

rototype building models [14] . The prototype building models

epresent 80% of the commercial building floor area in the United

tates for new construction, including both commercial buildings

nd mid- to high-rise residential buildings. These prototypes were

riginally developed for DOE to assess the relative improvement

f sequential versions of ASHRAE Standard 90.1. Seed models are

implified prototype buildings generated from the Asset Score Tool;

herefore, the levels of detail in these seed models represent build-

ngs to be evaluated by Asset Score. Seed models were created for

2 archetype buildings ( Table 1 ) and closely align with the DOE

rototype buildings following ASHRAE Standard 90.1–2004, which

as chosen to represent average buildings in the technical devel-

pment of the Asset Score [1] . The building types were selected

ased on the building area types defined by ASHRAE Standard 90.1

15] and were further categorized as small, medium, large or low-

ise/high-rise based on the prototype building descriptions. The

rototype buildings follow these descriptions as these categoriza-

ions define the most typical HVAC systems or other building char-

cteristics (e.g., window-to-wall ratio). For example, a small office

s typically served by roof-top single-zone systems, while a large

ffice building is likely to be served by variable air volume (VAV)

ith reheat systems [16] . These “typical” building characteristics

nform the regression analysis for Preview. The seed models are

ore homogeneous than the prototype buildings. They have rect-

ngular footprints and the internal loads are evenly distributed.

ll operational assumptions are derived from ASHRAE Standard

0.1–2013, Appendix C [15] and include thermostat setpoints, oc-

upancy and lighting schedule, occupant densities, receptacle loads

nd schedule, process loads and schedule, ventilation rates. 
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Fig. 2. Overall workflow of the regression analysis process and asset score tool. 
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Each seed model contains up to 38 input variables (listed in

Appendix A ), which were identified as important building char-

acteristics from a series of sensitivity analyses [1] . The sensitiv-

ity analysis identified all inputs that are important to determining

a building’s as-built efficiency level, as well as their level of im-

pact on energy use by building use type, size and location. Overall,

interior lighting power density, heating system efficiency, floor-to-

floor height and air handler fan efficiency are the most sensitive

parameters for most of the use types. The ranking of the sensitive

variables for different use types changes by climate zone. The vari-

ables include climate zone, envelope thermal properties (e.g., U-

value), HVAC characteristics (e.g., heating/cooling system efficiency,

fan efficiency, system controls), and lighting characteristics (e.g.,

interior lighting power density, lighting controls). Not included in

this list of 38 variables are the standard operation parameters such

as schedules, temperature setpoints, plug loads or ventilation rates

as well as the HVAC system type, which is not sampled through

the regression analysis. Sampling across various system types (in-

cluding the heating source, cooling source, reheat type, fan con-

trol and pump controls, among others) was proven to time- and

resource-consuming; instead, multiple seed models were created

to represent the most common types of HVAC systems in each

building use type. For instance, two seed models were created for

medium office to analyze packaged VAV with electric reheat sys-

tem and packaged single-zone air-conditioning system. At the time

of the deployment of the Asset Score Preview, there were 46 mod-

els serving as a baseline for all simulations used in the framework.

All buildings are modeled as rectangular core and perimeter zone

models with the aspect ratio, floor plan area and number of stories
as variables. m  
.2. OpenStudio analysis framework 

The seed models were analyzed using the OpenStudio Analysis

ramework. The OpenStudio Analysis Framework enables an effi-

ient setup of analyses (e.g., sampling, optimization) by using an

xcel-based spreadsheet to select the seed model, algorithm de-

ails, variables and outputs. It uses a combination of Ruby, R, Open-

tudio and MongoDB to create a cluster of machines in Amazon’s

lastic Compute Cloud (EC2) to run the simulations in parallel. The

esult of the analysis is a .CSV that can be loaded as an R data

rame for statistical modeling, with each row representing a sin-

le simulation. The columns of data are defined as outputs dur-

ng the initial setup. The OpenStudio Analysis Framework can run

everal algorithms, including sampling (i.e., Latin hypercube sam-

ling), batch runs, optimization or calibration. Typically, the Open-

tudio Analysis Framework requires OpenStudio models (OSM files)

o run the simulations. To use the analysis framework with Asset

core, the framework was extended to operate on XML files as well

s OSM files and EnergyPlus IDF files. Fig. 3 shows the workflow

or running simulations with the Simulation Framework and XML

le injected. An XML file was generated for each seed model which

as then analyzed using the OpenStudio Analysis Framework. 

The OpenStudio Analysis Framework relies heavily on the use

f OpenStudio measures [3] . In the simplest terms, a measure is a

mall Ruby script that is executed against the input file to make a

ontrolled change. These changes can be simple perturbations (e.g.,

hange the chiller coefficient of performance to 5.0) or can be quite

omplex (e.g., add two stories to a building while maintaining the

ame square footage). For the Asset Score analysis, the concept of

easures was extended to enable the perturbation of the Simu-
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Fig. 3. Workflow for running XML-based measures using the OpenStudio analysis 

framework. 

l  

X  

w  

T  

a  

T  

g  

r

3

 

v  

E  

d  

t  

a  

(  

s  

b  

o  

a  

p

 

r  

b  

a  

b  

s  

t  

m  

t  

c  

e  

d  

w  

t  

w  

u  

v  

n  

j  

w  

m

 

a  

O  

w  

a  

a  

p  

i  

t  

a  

p  

v  

t  

t  

v  

i  

i  

D  

b  

s  

r  

s

3

 

t  

p  

fi  

p  

r  

u  

g  

y  

c  

w  

t  

d  

p  

e  

r  

u  

o  

O  

b

 

d  

c  

m  

r  

l  
ation Framework’s XMLs. The Asset Score used a combination of

ML measures (which manipulated the Preview Simulation Frame-

ork’s XML file), OpenStudio measures and EnergyPlus measures.

hese measures are collectively applied to the XML file to generate

n EnergyPlus file that is simulated to generate simulation results.

he reporting measure component then takes in the SQLlite output

enerated from EnergyPlus to post-process the data and generate

esults required for the development of the regression model. 

.3. Sampling and stock simulations 

Each seed model contains up to 38 input variables, representing

arious building system inputs analyzed by the Asset Score Tool.

ach variable was assigned a minimum, maximum, mean, stan-

ard deviation and distribution (i.e., uniform or triangle) represen-

ative of typical efficiency ranges based on existing building stock

nd available advanced technologies. Defaults in a seed model

e.g., floor plan area, number of stories, envelope U-factor, HVAC

ystem efficiencies) are assumed to be the mean values for that

uilding type. The input variables were individually modeled with-

ut accounting for interactive effects. The list of input variables

nd their default values and ranges are discussed in a previous

ublication [1] . 

The dependent variable, i.e., the output of each simulation

un, is the adjusted source EUI calculated from modeled site EUI

ased on fuel mix (electricity, natural gas, district steam, etc.)

fter climate normalization. Adjusted source EUI was calculated

y first multiplying the fuel type totals by nominal source-to-

ite ratios [17] . The second adjustment was climate normaliza-
ion, which is intended to generate comparable scores across cli-

ate zones. Over 10 0 0 sets of climate coefficients were developed

o adjust building energy use at the end use level. Each set of

oefficients includes multipliers for heating, cooling and fan en-

rgy use for the corresponding weather station. Climate indepen-

ent loads, such as lighting and plug loads, are not adjusted. The

eather coefficients were derived from simulations of nine proto-

ype buildings of different use types and HVAC types across 1020

eather stations in EnergyPlus. The source EUI values (by end

se) were then adjusted by multiplying a set of coefficients de-

eloped for each weather location. The methodology of climate

ormalization is discussed in a previous publication [18] . The ad-

usted source EUI was calculated for each simulation result, and

as the only dependent variable used in training the regression

odels. 

To create the uncertainty models, approximately 80 0 0 vari-

tions of an individual seed model were simulated using the

penStudio Analysis Framework. The variations of the seed model

ere derived by randomly sampling each of the 38 input vari-

bles. This framework allowed for the specification of ranges of

llowable values as well as the distribution of these ranges. In-

ut variables were defined as multipliers from the mean values

n the seed model. This allows for the same analysis configura-

ion to be used for all of the seed models. After all the allow-

ble ranges and associated distributions were defined, a Latin hy-

ercube sampling algorithm was used to create the sample set of

alues for the simulations. These samples were drawn from dis-

ributions determined through extensive interactions with indus-

ry expert working groups. The algorithm and its efficacy in de-

eloping energy models are discussed in [19] . Results from the

nitial simulation process consisting of 13,600 analyzed sensitiv-

ties can be accessed from www.dencity.org , the website for the

OE’s Energy City [20] . The number of simulations chosen was

ased on training regression models to an increasingly smaller

ubset of the 13,600 simulation datasets, until a loss in accu-

acy of the regression models was observed, slightly below 80 0 0

imulations. 

.4. Developing regression models 

Multiple regression techniques were initially investigated to de-

ermine an acceptable technique for use in meta-modeling for the

reviously detailed datasets. In this paper, meta-modeling is de-

ned as a regression model in addition to the input and output

rocessing required to allow a non-technical user to execute the

egression algorithms. Based on past institutional experience with

sing linear regression models for similar proposes, non-linear re-

ression models were the major focus of exploration for this anal-

sis. Further exploration found that allowing support vector ma-

hines to accurately regress across different climate zones [21,22] ,

ould require significant tuning and effort. Although convolu-

ion neural nets may have performed exceptionally well on these

atasets, the random forest approach was chosen due to the sim-

licity of its implementation and its robustness, as well as its gen-

rally excellent performance, as discussed below. For details of the

andom forest model, refer to [23] . All methods were tested in R,

sing the packages randomForest [24,25] and gam [26] . Through-

ut this section and several following, results from the Medium

ffice (packaged rooftop VAV with electric reheat) seed model will

e shown to illustrate the workflow. 

To create the regression models for each seed model, the ∼80 0 0

ata points were randomly divided into two sets: a training set

omprising 85% of the data used and a test set comprising the re-

aining 15%, which would be used to measure the accuracy of the

egression model. See the top pane of Fig. 4 . The training simu-

ation set was then passed to the random forest generating algo-

http://www.dencity.org
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Fig. 4. Regression model training process based on 80 0 0 simulation runs per model 

generated. 
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rithm, contained in the R package Random Forest, as illustrated in

the middle panel of Fig. 4 . A random forest is a large aggregation

of decision trees, each of which is independently trained. Each tree

is given at random 70% of the data provided to the forest, on which

it then regresses. An individual tree is represented in the bottom

pane of Fig. 4 . The remaining 30% of the data points seen in the

middle pane are used by the random forest to measure the ac-

curacy of each tree once it is built, and aggregated to provide an

estimate of the accuracy of the forest ensemble. At the time of the

analysis, only two hyper-parameters were available in the R pack-

age for tuning the performance of the random forests, m_try (the

number of variables to test at each split) and n_trees (the num-

ber of trees to build in the forest.) Two separate processes were

executed to choose the parameters. In the first, multiple models

were built with increasing numbers of trees within the forest and

cross validated. In this experiment, the accuracy of the forest was

determined to have converged by 200 trees, which was adopted as

the default value. The second experiment was to perform a gridded

search across m_try and n_trees both. This search demonstrated

that the default m_try value of n/3, where n is the number of fea-

tures in the parameter space, provided the best cross-validation

score in the search space, and that the accuracy of the forest had

converged by the selected parameters against the reserved test set.

To create the tree, each node considers half of the explanatory

variables, selected at random. The node must divide all data points

associated with it into two groups around a splitting value se-

lected along one of the considered explanatory variables. This split-

ting value is selected to minimize the variance of the new nodes
Fig. 5. Node splitting procedure for the 
reated by the division, using the mean square error of the two

aughter nodes as a proxy. The mean square error is defined as the

um of the variance and the squared bias—in case of an unbiased

stimator, this is equivalent to the variance. It can be calculated

s: 

2 

√ 

1 

n 

n ∑ 

i =1 

(
S i −

∑ n 
j=1 S j 

n 

)2 

here S is the set of sample observations, i.e., simulations, to be

valuated at a given node, and S n represents the n th simulation

esult. Note that the assumed truth is the average of the set of ob-

ervations, i.e., 1 
n 

n ∑ 

j=1 

X n , as the value returned from an exit node

n the tree is the mean of the observations contained in the node.

his approach is also used with categorical variables (i.e., climate

one), which are ordered and mapped to the integers arbitrarily.

lthough this is a serious drawback to the algorithm’s implemen-

ation, changing this behavior was outside the scope of this project.

s illustrated in Fig. 5 , this process continues until each node has

ve or fewer data points associated with it. In that case, the branch

s terminated and the average EUI of the remaining data points is

et as the exit value of that branch. For further details regarding

he process by which an individual tree can be constructed, refer

o [9,23] . When this process has been completed for each tree in

he forest, the training of the regression model is complete. 

The final step of the regression model generation process is to

udge the accuracy of the random forest. Although the forest keeps

nternal accuracy statistics, which are inherently robust, the 15%

f simulation data reserved (see the top pane of Fig. 4 ) is used to

auge the overall effectiveness of the regression. To do this, the EUI

alues of the test dataset are predicted by the regression model

sing only the explanatory variables. The returned predictions are

ompared with the known truth values and the resulting graph,

ommonly called a parity plot, is saved to file for each regression

uilt. This plot can be seen in Fig. 6 for the Medium Office pack-

ged variable air volume (PVAV) with electric reheat seed model.

here is a high fidelity goodness of fit between the predicted and

imulated values, with an R 

2 value of 0.935, on the low end of

 

2 values seen across the project. This shows that the regression

odel provides a high degree of accuracy in predicting simula-

ion results within the defined sample space, at a fraction of the

omputational time of a full building energy model (BEM). In ad-

ition, it is clear from Fig. 6 that the prediction engine slightly

ver-predicts low EUI structures, and slightly under-predicts high

UI structures. This trend was seen across the majority of engines,

egardless of building type and HVAC system type. 
random forest training algorithm. 
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Fig. 6. Parity plot showing the fit of the reserved test data of 1194 data points against the predicted values of the regression model. 
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Fig. 7. Input distribution for interior lighting power density with an inference of 

2 W/ft 2 and uncertainty distribution. 

Fig. 8. Input distribution for wall construction type with values for an uncertain 

input. 
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D  
. Integration of regression model with preview 

The regression models were integrated with the Asset Score

ool as a Preview function. User input, both values and certainty,

s passed to the meta-model through the AS XML. This XML con-

ains the FEDS inference engine’s best guess of various values that

re not user inputs (such as wall U-factor, window U-value and so-

ar heat gain coefficient), as well as a Boolean value representing

he user’s certainty for each of the Preview default values. These

alues are parsed out of the XML and used to populate the regres-

ion model. To capture the uncertain nature of the user’s inputs,

he meta-model takes the information provided by the user and

ses it as a basis for sampling the regression model. Depending on

he user’s certainty in their information on different end-use cat-

gories, the respective sets of variables are either fixed (if a value

s verified by the user), sampled over a triangle distribution cen-

ered at the user’s input (if a value is indicated as unknown by

he user), or sampled uniformly. This last procedure is only em-

loyed by default on controls variables and geometry configuration

ariables. HVAC variables, should the user be unsure of their HVAC

ystem type, are also set to uniformly uncertain. 

Given the limited input of the Asset Score Preview, the geom-

try variable groups of the XML, as well as all control strategies,

re always set to be uncertain. The Asset Score XML certainty in-

uts are parsed in one of three ways. If the user indicates they are

ertain regarding a variable group, then the values for that group

re fixed for all 10,0 0 0 data points. In the case that the user indi-

ates they are uncertain about a variable group (excluding HVAC),

he values inferred by the Analytical Engine are used as the modes

f a set of triangle distributions spanning the entire range of each

ariable in the variable group. See Figs. 7 and 8 for an example

non-HVAC) unspecified variable. 

If the user fails to specify the HVAC system, there is a great

mount of uncertainty in the model. One option considered was to

un the uncertainty analysis on multiple HVAC system types. This

as ultimately not selected as the course of action as it would in
any cases return an extremely wide score range, thus providing

o useful information. Instead, it was decided that in the case of an

nspecified system, the default HVAC system type (based on CBECS

ata and prototype buildings) would be used; however, all HVAC-

elated values, such as the system efficiency, controls and fuel type,

ould be considered uniformly uncertain across their entire range.

ue to the importance of several of these variables, this will pro-
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Fig. 9. Input distribution for a variable in the HVAC group, for an uncertain input. 

Fig. 10. Variable importance specification process, showing the bifurcation of vari- 

ables based off of the variable classification (controls, geometry, HVAC, etc.) user 

input and FEDS inference. 
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duce a sufficiently wide EUI range, but one that still provides the

user with some value. Fig. 9 gives an example of the distribution

of an uncertain HVAC system variable. In the case of a categorical

variable, i.e., wall construction type, if the input is not certain, all

possible values are uniformly sampled. 

The process by which variables are assigned distributions is

summarized in Fig. 10 . All controls and geometry variables, as well

as HVAC variables (if the user is uncertain of system type), are de-

termined to be unimportant for user input in the Preview tool, and

sampled uniformly across their range. All other variables that are

not marked as certain by the user are assigned triangle distribu-

tions spanning the variable’s range with a maximum at the FEDS

indicated value if they are numeric, or assigned a uniform distri-

bution if they are categorical. Finally, all values specified as certain

by the user are fixed at that value in all additional sampling, once

again generated using a Latin hypercube sampling algorithm. 

4.1. Impacts of uncertain inputs 

The results of the regression model are highly dependent on

the user’s certainty of input. Fig. 11 shows the distributions re-

turned from a base medium office AS XML that sampled against

the medium office (packaged VAV with electric reheat) seed model.

By default, each estimate is made up of 10,0 0 0 samples drawn

from the distributions determined based on the process discussed

above. Four different certainty sets were used for predictions. In

the first case, all certainty types (except geometry, which is always

uncertain) were set to certain. In the second case, only HVAC sys-

tem type and fuel type were set as certain, in the third case, only

lighting inputs, including lighting power density and lighting con-
rol, were set as certain, and in the last case, none of the parame-

ers were set as certain. As shown, the regression model is highly

ensitive to the certainty of the inputs. Particularly desirable is that

he mean, mode and range of the distributions are highly articu-

ated, allowing simple statistical measures to provide a high degree

f information to the user. The adjusted source EUI as modeled by

nergyPlus was 185 kBtu/ft 2 -yr (2100 MJ/m 

2 /yr), which falls in the

iddle of and is approximately the maximum likelihood estima-

ion of the all certain distribution. 

An additional challenge faced in the development of the pre-

iew methodology was the support of the full Asset Score Tool

or ASHRAE 90.1 Appendix G system types [15] , across all Asset

core building types [4] . Given 80 0 0 required simulations per com-

ination of building type and system type, a full set of input data

ould have required approximately 1.4 million simulations. At the

ime, running more than 250,0 0 0 simulations using the OpenStu-

io Analysis Framework was challenging, although this limit has

ince been significantly raised. Therefore, a subset of the full 176

ossible combinations of system and building type had to be se-

ected for simulation, and the remaining combinations mapped to

 regression model. The system types were selected based on the

ost predominant system types found for each use type, as iden-

ified through CBECS [27] data. For the less predominant system

ypes, a mapping was developed to a similar system analyzed. A

ubset of this mapping can be found in Table 2 . In total, 43 com-

inations of system type and building type were simulated and

sed for regression models in this project. For example, analysis

f CBECS data for libraries showed that only 16% of all libraries

sed VAV systems and 2.7% of all libraries used heat pumps for

eating and cooling. Packaged air conditioning systems were used

n 47.9% of the libraries. Hence, the three seed models created

or the library use type were defined using packaged air condi-

ioning systems, VAV with electric reheat and VAV with hot wa-

er reheat. Heat pumps were not analyzed for libraries. Similarly,

BECS data showed that only 7% of retail buildings use VAV sys-

ems, whereas 18.5% use individual air conditioners and 45.2% use

ackaged air conditioning units. Hence, VAV systems were not an-

lyzed for retail buildings, and instead packaged terminal equip-

ent and rooftop units were analyzed. Table 2 shows this mapping

or a subset of use types. 

.2. Result post-processing 

The regression model gives an estimate of the EUI range (within

5 percentile of results) as well as the mean EUI for the building

ith all the input values and associated uncertainties. The mini-

um, mean and maximum of the distribution of values from the

egression model is written as a CSV file and returned as the out-

ut of the meta-model. The minimum, maximum and mean EUI

alues are mapped to Asset Scores. To fit the distribution to the

esired score range, a simple mapping is used. Let H be defined as

he high Asset Score, L be defined as the low Asset Score, M as the

ean Asset Score and S as the desired Asset Score range. Then the

ower limit of the range, S min , and the upper limit of the range, S max ,

s given by: 

 min = M − S range 
M − L 

H − L 

 max = M + S range 
H − M 

H − L 

This method ensures that tails and skewness are well repre-

ented in the Preview Asset Score presented to the user. Note that

he desired score range is fixed for varying uncertainty conditions

o ensure a consistent user experience with Preview report, al-

hough more uncertain values yield a wider score range. 
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Fig. 11. Example of the impact of specifying various levels of uncertainty in the input to the analysis. Each distribution is based on 10,0 0 0 pseudo-random samples. 

Fig. 12. Example of the score range returned from the analysis. 
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score value. 
An Asset Score Preview report is generated, which provides the

urrent score range, potential score range and estimated source en-

rgy savings, see Fig. 12 . The estimated savings are based on the

ataset of buildings entered into the Asset Score Tool and average

avings seen by buildings scoring within a certain range. The po-

ential score range is calculated based on the EUI reduction after

he savings are applied. It is worth noting that building the re-

ression models can be relatively time-consuming, on the order of

–10 min per regression model; however, executing the built re-

ression models is very fast, taking around 10–100 ms, allowing

or near-real-time feedback to the user. 

. Testing and validations 

The meta-models were tested using two sets of inputs: (i) the

eed models (i.e., simplified Prototype Buildings) developed for the

ncertainty analysis, and (ii) buildings entered by users into the

sset Score Tool during the pilot studies conducted in 2012 and

013 [28] . The intent of this testing process was to determine if the
ncertainty analysis model could accurately reflect the efficiency of

 building, considering the limited data provided. 

The seven basic building characteristics of the 22 seed models

ere entered into Preview to generate the score range for each

eed model. The complete set of building characteristics for the

eed models was entered into the full Asset Score Tool to gener-

te the Asset Score using whole building energy simulation. The

cceptance criteria employed in the testing process required the

ull Asset Score to be within the range returned by Preview. All

uildings passed the test as the actual scores lie within the score

ange determined through Preview. Table 3 shows the example re-

ults. Building geometry and HVAC system controls, such as de-

and control ventilation, supply temperature reset, and others, are

lways considered uncertain. This can have a significant impact on

ow a full building scores in reference to the Preview score range.

he fact that some seed models score closer to the Preview high

core and others closer to the low score is a result of the sensitivity

f the applicable HVAC system controls. For example, the medium

ffice seed model is analyzed with a packaged VAV with electric

eheat system with controls such as fan static pressure reset and

inimum airflow fraction specified at 0.3. The Preview model as-

umes these HVAC controls to be uncertain and the EUI range de-

ermined includes the impact of a minimum airflow fraction speci-

ed at 0.4 and 0.3 as well as the VAV fans modeled with and with-

ut static pressure reset controls. The full seed model is run with a

inimum airflow fraction of 0.3, resulting in lower reheat energy

elative to 0.4, and thus a score that is closer to the Preview high
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Table 3 

Test results for the SEED models. 

Seed model 

Preview 

low score 

Preview 

high score 

Full input 

mode score 

Medium office 3 6 5.5 

Retail stand alone 6.5 9.5 7 

Warehouse 5.5 8.5 8 

Small office 4 7 6 

Large office 4.5 7.5 4.5 

Primary school 5.5 8.5 6 

City hall 3.5 6.5 5.5 

Courthouse 5.5 8.5 6.5 

Library 6 9 7 

Small hotel 7 10 8 

Large hotel 7 10 8.5 

Assisted living 6 9 7 

Medical office 4 7 5.5 

Mid rise apartment 6.5 9.5 7.5 

High rise apartment 5 8 7.5 

Low rise apartment 6.5 9.5 6.5 

Police station 4.5 7.5 5.5 

Post office 4.5 7.5 5 

Parking garage (Heated/Cooled) 5 8 6.5 

Religious building 5 8 5.5 

Senior center 5 8 7 

Community center 4 7 6 
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The pilot buildings were evaluated with two configurations: the

inimal seven inputs with all Preview defaults marked unknown

nd the seven inputs with all defaults being edited or verified

ased on the actual building data. The first set, submitted with

even inputs and none of the default inputs verified, did not con-

istently result in score ranges that included the actual scores. Of

he 160 pilot buildings that were analyzed for this purpose, 65%

ad scores within the range identified by Preview and the remain-

ng 35% scored outside the resulting Preview range. The alignment

as dependent on how closely the preview defaults coincided with

he actual values as well as the sensitivity of the parameters that

id not coincide. Editing or verifying the default values to actual

alues significantly improved the alignment of the buildings ana-

yzed. 

A subset of 40 pilot buildings were randomly selected and en-

ered in Preview with the seven minimal inputs and default values

odified in accordance to the actual building inputs. In this analy-

is, the default values for lighting fixture types, HVAC system type,

indow glass type and window-to-wall ratio were either verified

r edited to reflect the actual systems present in the building. A

igher degree of accuracy was observed where the actual score of

he building fell within the score range calculated through the re-

ression models for 95% of the test cases. Buildings falling outside

he Preview score range were the highly efficient buildings with

quipment performance ratios higher than typically found. Since

quipment efficiencies, inferred by the Asset Score Analytical En-

ine, are based on CBECS data, these buildings were not well repre-

ented and the full score was much higher than the preview score.

ig. 13 shows the example results of buildings tested in the second

onfiguration. The X axis is the ID of the building entered in Asset

core Tool and Y axis is the score. The HVAC system type, lighting

ower density and the window-to-wall ratio were sensitive inputs

hat were found to affect the uncertainty analysis. Measuring this

ensitivity reliably remains an open issue, making these insights

ualitative in nature. Generally speaking, as seen in the results in

ig. 13 , the accuracy of the Preview score is significantly improved

hen these three inputs are validated. 
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Fig. 13. Testing results for pilot buildings. 

Fig. 14. Quadrant matrix analysis for overall building performance. 

6
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. Applications 

Asset Score Preview provides a simplified approach for batch

nalysis of a large number of buildings to identify buildings with

he highest potential for energy savings. Preview assessment is also

eneficial when compared to measured energy use data or bench-

arking score, such as ENERGY STAR Portfolio Manager score [29] .

hen compared to Portfolio Manager scores, Asset Score Preview

cores provide supplemental information to identify opportunities

or energy efficiency measures by giving a multidimensional view

f a building’s performance. On one hand, the Portfolio Manager
core provides insight into a building’s operation; conversely, Asset

core Preview can highlight a building’s asset performance. 

Fig. 14 provides an example of the quadrant analysis approach

or comparison of a dataset’s Portfolio Manager Score against As-

et Score Preview’s median score. The dashed lines show average

alues for both the Portfolio Manager scores and Asset Score Pre-

iew datasets. Buildings with high Portfolio Manager scores and

igh Preview scores are most likely to have the least possibility for

etrofits or system tune-ups versus buildings with both low Port-

olio Manager scores and Preview scores. This quadrant analysis

pproach is being utilized by several organizations for screening
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Table A.1 

Variables analyzed for preview regression model development. 

Variables 

Air handler fan efficiency Interior lighting power density 

Aspect ratio Location 

Chilled water reset Minimum airflow fraction 

Chiller pump control Orientation 

Condenser pump control Perimeter zone depth 

Cooling efficiency Roof construction type 

Cooling tower control Roof U-value 

Daylighting control Shading height above window 

Demand control ventilation Shading projection factor 

Economizer Gross floor area 

Energy recovery ventilation Supply air temperature reset 

Fan control Wall construction type 

Fan static pressure reset Wall U-value 

Floor plate area Water heater efficiency 

Floor R-value Window solar heat gain coefficient 

Floor-to-ceiling height Window sill height 

Floor-to-floor height Window U-value 

Heating efficiency Window visible light transmittance 

Heating fuel type Window-to-wall ratio 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

buildings with highest energy savings potential through retrofits

and system tune-ups. 

7. Conclusions 

The Asset Score Preview creates a viable framework for ana-

lyzing building efficiency. With limited effort from users, it can

provide useful information about a building’s assets and identify

buildings that have great potential for improvement or could bene-

fit from a more in-depth analysis. The use of random forest models

to ascertain the range of uncertainty in the building’s EUI allows

limited inputs from the user to generate meaningful results with-

out the significant computation time and power required for more

detailed whole building energy modeling. The validation of this

framework shows that additional sensitive inputs verified by users

can greatly improve the accuracy of the Preview results. Buildings

with more complex geometry, mix-used type, or advanced HVAC

systems may not be suitable for Preview because oversimplifica-

tion likely results in low accuracy. 

This study explores a feasible way to increase the adoption of

a rating system by offering a more friendly entry to the full capa-

bilities of the Asset Score. Preview is intended to provide an easy,

streamlined approach for quickly screening and evaluating building

efficiency with limited available information. The balance between

input simplicity and result accuracy is a constant battle. Preview is

seeking this optimal point. The score range estimated through Pre-

view is intended to indicate a building’s general energy efficiency.

The capability of converting a Preview building to a full Asset Score

building allows the Asset Score Tool and associated energy effi-

ciency analysis to be more accessible to a broader range of users. 

To facilitate analysis of a large number of buildings, Preview

also supports batch analysis, which allows users to upload a group

of buildings through a spreadsheet and generate Preview scores all

at once. The batch-analysis workflow includes a simple three-step

process of spreadsheet upload, batch simulation for the uploaded

buildings and a CSV download with score ranges of all buildings.

The intent is to provide a capability for organizations looking to

conduct analysis on a large number of buildings in order to iden-

tify buildings for more detailed review. The batch analysis capabil-

ity reduces the amount of manual work required to generate the

Preview scores and can be used to pre-analyze large portfolios of

buildings with relatively minimal initial effort. The expected users

include utility program administrators, city energy program man-

agers and large real estate portfolio managers. 
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